
6 - Red-Black Trees
Joseph Afework
CS 241

Dept. of Computer Science
California Polytechnic State University, Pomona, CA

Agenda

● Intro
● Properties
● Search Operation
● Insertion Operation
● Deletion Operations
● AVL vs Red-Black Trees

Reading Assignment

● Read Chapter 27 - Balanced Search Trees
○ Chapter 27 (Read about: AVL, Red-Black Trees, B-Trees)

Red-Black Trees

Red-Black Trees

● Type of BST (remember rules of a Binary Search Tree)
● Like an AVL tree:

○ Goal is to keep the tree balanced to yield better run times
○ Special rules/properties are used to rebalance the tree after insertions/deletions

Colors

● Every node must be one of two colors:
○ Red
○ Black

● A node being a specific color must follow certain rules.
● The color information needs to be stored alongside the key in the tree

Red Nodes

● Every Red node can only have two black child nodes:
○ A red node cannot have a child node that has the color red
○ Can't have two reds in a row
○ Every red node has a black parent

Black nodes

● Leaf nodes are always null.
○ Leaf nodes never store values.

● Leaf nodes are always black.
● The root node is always black.

Paths

● Every path from any node to any descendant leaf node must contain the
same number of black nodes.

ICE: 7.1 Identification

Which of the following are not Red-Black Trees?

ICE: 7.1 Identification Contd.

Which of the following are not Red-Black Trees?

Observations

1. The longest path from the root to any leaf is no more than twice as long as
the shortest path from the root to any other leaf in that tree.

2. Tree is roughly balanced.
3. Insertion, deletion, and search lean towards log(n).

Terms

N: Inserted Node

G: grandparent Node

P: parent Node

U: uncle Node

Insertion

1) Insert a value according to the rules of BST.
2) All inserted nodes start colored as Red by default.
3) From the node inserted, and examine the relevant nodes (parent,

grandparent, uncle nodes) to determine if a case has been violated.
4) Resolve violation according to rules for the case
5) Reorder/Recolor nodes as needed in accordance to the rules

Violation Case 1

1. Inserted node is child of a red node
2. Uncle Node is red

How to Fix:

1. Swap the color of the parent, grandparent and uncle
2. Check from grandparent upwards for further violations (recursive)

Case 1 Contd.

2 is inserted Swap Colors Check Grandparent

11

16
4

2

violation

11

16
4

2

violation

11

16
4

2

Violation Case 2

1. Inserted node is child of a red node
2. Uncle Node is black
3. The inserted node/violating node is on the (inside of the subtree)

How to Fix:

1. Rotate the parent node downward (think AVL rotations)..
a. Turns Case 2 violation into a Case 3 violation

2. Follow rules for Case 3

Case 2 Contd.

5 is inserted Rotate (convert to Case 3 violation)

11

nil
4

5

violation violation

11

5

4

nil

Violation Case 3

1. Inserted node is child of a red node
2. Uncle Node is black
3. The inserted node/violating node is on the (outside of the subtree)

How to Fix:

1. Rotate around the grandparent node (think AVL rotations)..
2. Swap the colors of the parent and the grandparent

Case 3

Remember: 5 was inserted Rotate around grandparent Swap Colors

violation

11

nil

5

4 11

nil

5

4

11

5

4

nil

ICE: 7.2 Red-Black Tree Insertion

Insert the following values, rebalance the tree according to the Red-Black tree
rules.

1 2 3 4 5 6

Solution

ICE: 7.3 Red-Black Tree Insertion

Insert the following values, rebalance the tree according to the Red-Black tree
rules as you are inserting the values.

14, 17, 11, 7, 53, 4, 13, 12, and 8

Deletion

● Deletion process is fairly complicated
● There are a few basic states, and numerous edge cases that must be

identified and followed to successfully delete and rebalance the tree.
○ Roughly 10 cases or so depending on implementation
○ BST only had 3 cases...

● Checkout Wikipedia for a more information
○ https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

Performance

Red Black Trees Average Case Worst Case

Insert O(log(n)) ~ O(log(n))

Delete O(log(n)) ~ O(log(n))

Search O(log(n)) ~ O(log(n))

AVL vs Red-Black Trees

1. Generally more balanced: AVL
2. Greater rotational operations/overhead: AVL
3. Trying to perform more insertions/deletions than searches: Red-Black Trees
4. Trying to perform more searches than insertions/deletions: AVL (AVL is more

balanced)

R-B Applications

● Used in:
○ Java:

■ java.util.TreeMap
■ java.util.TreeSet

○ C++:
■ STL map,
■ multimap,
■ multiset

Resources

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree

https://www.cs.usfca.edu/~galles/visualization/RedBlack.html

http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html

https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://en.wikipedia.org/wiki/Red%E2%80%93black_tree
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
https://www.cs.usfca.edu/~galles/visualization/RedBlack.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html
http://docs.oracle.com/javase/7/docs/api/java/util/TreeMap.html

